

Estimating and Testing Latent Interactions: **Advancements in Theories and Practical Applications**

Herbert W. Marsh Oxford University **Zhonglin Wen**

South China Normal University Hong Kong Examinations Authority Benjamin Nagengast

> Oxford University Kit-Tai Hau

The Chinese University of Hong Kong

International Congress of Applied Psychology, Melbourne 2010

What is in the Book: Outline

- Multiple regression: between observed variables
- Latent-Variable Approaches
 - Multiple SEM
 - SEM interaction between latent variables
 - Main issues related to latent interaction model
- Strategies for creating product indicator
 - Types of product indicators
 - Strategies for matching indicators
- Parameter Constrained and Unconstrained approaches
 - Constrained approach
 - Partially constrained
 - Unconstrained approach

Latent Interaction -- Marsh, Wen, Nagengast, Hau 2

Outline (Cont)

- Centering of indicators and mean structure of latent models
 - Raw indicators
 - Mean-centered indicators
 - Orthogonalized product indicators
 - Double-mean-centered indicators
- Appropriate standard solutions and scale-free properties
 - Appropriate std solutions
 - Scale free propertie
 - Calculation of SE through Bootstrap samples
- An example with appropriate std solution
- Robustness to violations of normality assumption

Latent Interaction -- Marsh, Wen, Nagengast, Hau 3

Outline (cont)

- Distribution-analytic Approaches
 - Latent-moderated structural equation (LMS)
 - Quasi-Maximum Likelihood (QML)
 - Comparison to Product-Indicator Approaches
- Bayesian Method
- Summary
- Limitations and Directions for Future research
 - Quadratic Effects: confounding nonlinear and interaction
 - Test of measurement invariance
 - Multilevel Designs and Clustered Sample

Latent Interaction -- Marsh, Wen, Nagengast, Hau 4

Introduction

- Examples
 - Ed Psych: effects of an instructional technique interact with students' characteristics
 - Dev Psych: effects of a variable interact with age
 - Soc Psych: effects of individual characteristic depends on
 - workplace characteristics
 - Moderator: variable affects direction and/or strength of relation between indep var and dep var, typically defined as $X_1 \times X_2$

Latent Interaction - Marsh, Wen, Nagengast, Hau 5

Introduction

Traditional (nonlatent) Approaches

- Interaction between two manifest variables (X_1, X_2) on outcome
 - ♠ X₁, X₂ small number of categories: ANOVA
 - $lacktriangleq X_1, X_2$ cont., regression to estimate main and int'n $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + e$
 - Helpful to graph if interaction is significant
 - Empirical interactions typically small, non-sig, substantial measurement error reduces power of sig test
 - Latent interaction controls for measurement error, increase power, provide more defensible interpretation of interaction

Latent Variable Approaches

- Two Broad categories
 - ◆at least one variable involved is categorical with few categories (e.g., male/female) → multiple group SEM
 - both variables are continuous and latent → various approaches and best practice still evolving

Latent Interaction - Marsh, Wen, Nagengast, Hau 7

Latent Variable Approach Multiple Group Analysis

• latent variable $(\xi_1) \times$ observed categorical variable $(X_2) \rightarrow$ latent variable (η)

- \bullet X_2 small number of naturally existing categories, as grouping var
- test: invariance of $\xi_1 \to \eta$ effects over multiple groups; decline in goodness of fit with invariance constraint
- easily implemented in most SEM software
- problems: limitation in interpretation of the interaction, reduce power (small N), ignore measurement error categorizing var
- Not recommended, unless it is a true catergorial var with small number of categories with at least moderate sample sizes

Latent Interaction -- Marsh, Wen, Nagengast, Hau 8

Latent Variable Approaches Full Latent (variable) Approach

● Kenny & Judd (1984) proposed an ingenious heuristic model by constraining of loadings/variances of the product term

sh, Wen, Nagengast, Hau 9

Latent Variable Approach Main Issues

- different ways to form the product indicator; How many product indicators? How to form best set?
- many constraints on parameters make the method tedious /difficulty, are they absolutely necessary ?
- even if both ξ₁ ξ₂ have mean of zero, product term ξ₁ ξ₂ mean is not zero; mean structure complicates the application, is it really necessary?
- typical software do not provide appropriate SE for std effects, more serious with interaction model, how to obtain appropriate std solution?

Latent Interaction - Marsh, Wen, Nagengast, Hau 10

Strategies for Creating Product Indicators

2 guidelines

- use all the information (all multiple indicators should be used in forming product indictors)
- do NOT reuse information: each indicator used once in forming product indicators to avoid artificially created correlated residuals (variance/covariance matrix of errors becomes diagonal)
- Other possible strategies
 - Use the better indicators (when cannot use all indicators)
 - Use parcels (average of indicators) when there are too many indicators in a certain indep var too many indicators in a certain indep var

Parameter Constrained & Unconstrained Approaches

Constrained Approach

 Kenny & Judd (1984) proposed an ingenious heuristic model by constraining of loadings/variances of the product term

$$\eta = \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_1 \xi_2 + \zeta$$

$$\beta_3 \longrightarrow \beta_2$$

$$\beta_3 \longrightarrow \beta_3$$

$$\beta_4 \longrightarrow \beta_4$$

$$\beta_5 \longrightarrow \beta_5$$

Parameter Constrained & Unconstrained Approaches constrained approach (cont)

• Judd suggested using x_1x_3 , x_1x_4 , x_2x_3 , x_2x_4 as indicators of the interaction $\xi_1\xi_2$ and imposed many constraints on loadings and variances, e.g.

 $x_2 x_4 = \lambda_2 \lambda_4 \xi_1 \xi_2 + \lambda_2 \xi_1 \delta_4 + \lambda_4 \xi_2 \delta_2 + \delta_2 \delta_4$ (i) loading of $x_2 x_4$ on $\xi_1 \xi_2$ (i.e., λ_{24}) constrained to be $\lambda_2 \lambda_4$

- $(ii) var(\delta_{24}) = \lambda_2^2 var(\xi_1) var(\delta_4) + \lambda_4^2 var(\xi_2) var(\delta_2) + var(\delta_2) var(\delta_4)$
- Generally 2 constraints for each additional product indicator one for the loading, one for the measurement variance,
- Specification of these constraints so tedious, prone to error, thus method seldom used in applied research

Latent Interaction - Marsh, Wen, Nagengast, Hau 13

Parameter Constrained & Unconstrained Approaches constrained approach (cont)

 Jöreskog & Yang (1996) proposed a general model. When observed var are not mean-centered, measurement eqn with intercept terms are used

 $x_1 = \tau_1 + \xi_1 + \delta_1$ $x_2 = \tau_2 + \lambda_2 \xi_1 + \delta_2$ $x_3 = \tau_3 + \xi_2 + \delta_3$ $x_4 = \tau_4 + \lambda_4 \xi_2 + \delta_4$

 additional intercepts → (i) not only involve specification of mean structure, (ii) but also many nonlinear constraints (generally 5 constraints for one product indicator

Latent Interaction -- Marsh, Wen, Nagengast, Hau 14

Parameter Constrained & Unconstrained Approaches constrained approach (cont)

- Algina & Moulder (2001) revised Jöreskog-Yang model so that observed var are mean-centered as in Jaccard & Wan and a mean structure as in Joreskog-Yang
 - model was more likely to converge
 - even when all models converge, simulation results favor this revised model
 - Moulder & Algina (2002) compared 6 methods and concluded that their method was most effective with less bias, better control of Type I error rate, and higher power
 - thus we recommend this among all constrained approaches, and refer this as "constrained approach"

Latent Interaction -- Marsh, Wen, Nagengast, Hau 15

Parameter Constrained & Unconstrained Approaches Partially Constrained

- the assumption in constrained approach that ξ_1 , ξ_2 , ζ and all measurement errors are normally with mean of zero, distributed is untenable, i.e., $\phi_{31} = \cos(\xi_1 \xi_2, \xi_1) = 0$ is typically false, so are $\phi_{32} = 0$ and $\phi_{33} = \phi_1 \phi_{22} + \phi_{21}^2$
- applying constrained approach to non-normal data led to systematically biased estimates of interaction
- Wall & Amemiya (2001) proposed a generalized appended product indicator (partially constrained) procedure that did not constrain on Φ, but keeping all other constraints

$$\boldsymbol{\Phi} = \begin{bmatrix} \phi_{11} & & \\ \phi_{21} & \phi_{22} & \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix}$$

Latent Interaction -- Marsh, Wen, Nagengast, Hau 16

Parameter Constrained & Unconstrained Approaches Partially Constrained (Cont)

- Advantage: relaxes the assumption that ξ₁, ξ₂ are normally distributed
- Disadvantages: specification of constraints still complicated,

Parameter Constrained & Unconstrained Approaches Unconstrained

- Marsh, Wen, Hau (2002) evaluated an unconstrained approach
- Similar to constrained approach: product of observed variables used to form indicators of latent term, however, without imposed complicated nonlinear constraints
- Unconstrained model is identified when there are at least 2 product indicators

Latent Interaction -- Marsh, Wen, Nagengast, Hau 18

Parameter Constrained & Unconstrained Approaches Unconstrained

- Marsh et al.(2002) simulation showed unconstrained approach::
 - Comparable goodness of fit, proportions of proper solutions, bias in estimation for first-order and interaction effects. precision as the partially constrained approach
 - Importantly, it is much easier to implement (no constrained
 - However, when N is small, normality assumptions are met, the precision is somewhat lower than the constrained approach
- Summary: unconstrained approach is recommended for its ease in implementation and acceptable bias /precision

Latent Interaction - Marsh, Wen, Nagengast, Hau 19

Centering of Indicators & Mean Structure of Latent Interaction Models

- Raw Indicators: Mean structures are always necessary for structural and measurement equations
- Mean-centering Indicators: centering x-indicators simplifies model considerably → intercepts terms of measurement eqn of x- & product-indicators no longer necessary; intercepts of measurement eqn of y necessary (even if y's are centered)
- Even if ξ_1 , ξ_2 are, $E(\xi_1, \xi_2) = \text{cov}(\xi_1, \xi_2)$ typically not zero, hence constant term of $\xi_1 \, \xi_2$ is necessary
- Thus, intercept for y-indicators, and mean structure for latent interaction model needed
 Latent Interaction – Marsh, Wen, Nagengast, Hau 20

Centering of Indicators & ean Structure of Latent Int'n Models (cont)

- Orthogonalized Product Indicators
 - ●alternative to mean-centering, orthogonalize interaction term by regressing on both ξ_1 , ξ_2 :), regress x_1x_3 on x_1 , x_2 , x_3 , x_4 , and regress x_2x_4 on $x_1, x_2, x_3, x_4,$
 - treat these two residuals as indicators of the latent construct in a corresponding latent interaction model that does not require a mean structure
 - ■Cumbersome 2 steps procedure, non-random bias when (ξ_1, ξ_2) is not bivariate normal

Latent Interaction - Marsh, Wen, Nagengast, Hau 21

Centering of Indicators & Mean Structure of Latent Int'n Models (cont)

- Double-Mean-Centered Indicators
 - Lin, Wen, Marsh, Lin proposed to double center the indicators, let the centered x-indicator be: $x_1^c = \xi_1 + \delta$
 - $x_1^C x_3^C, x_2^C x_4^C$ then matched product indicators cenered again denoted by $(x_1^C x_3^C)^C, (x_2^C x_4^C)^C$ $(x_2^C x_4^C)^C = x_2^C x_4^C - E(x_2^C x_4^C)$ • it can be shown when x, y mean-centered, product indicators
 - double-mean-centered, mean structure is unnecessary
- Summary: mean-center all x, y indicators, create product indicator, fit model without mean structure (because software routinely centers Latent Interaction -- Marsh, Wen, Nagengast, Hau 22 them again)

An Appropriate Standardized Solution and Its Scale-free Properties (cont)

- appropriate std solution of interaction model not directly provided by usual commercial software
- Wen, Marsh, Hau (2010) derived appropriate std solution for latent interaction, which are scale free, SE and t-values are also scale free
- Let usual std coefficients be γ_1' , γ_2' , γ_3' , appropriate std coefficients γ_1'' , γ_2'' , γ_3'' are obtained:

 $\gamma_{1}'' = \gamma_{1}' \quad \gamma_{2}'' = \gamma_{2}' \quad \gamma_{3}'' = \gamma_{3}' \frac{\sqrt{\phi_{11}\phi_{22}}}{\sqrt{\phi_{33}}}$ where $\phi_{11} = \text{var}(\xi_{1}) \quad \phi_{22} = \text{var}(\xi_{2}) \quad \phi_{33} = \text{var}(\xi_{1}\xi_{2})$ are from the original solutions

Latent Interaction - Marsh, Wen, Nagengast, Hau 23

An Appropriate Standardized Solution and Its Scale-free Properties (cont)

- Scale-free properties of std solution
 - Wen, Marsh, Hau (2010) proved that the appropriate std estimates have the scale-free properties → invariant when calcualted from either the centered or std data
- Calculation of SE of appropriate std coef through Bootstrap samples (similar to original estimates) → t-values of original estimates can be used to test the significance of the appropriate std estimates, if close to cutoff point use bootstrap method

Unconstrained Approaches: Examples

 $\eta = \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 [\xi_1 \xi_2 - E(\xi_1 \xi_2)] + \zeta$

- Each latent variable has 3 indicators
- Assume η is math achievement, ξ_1 is prior math ability, ξ_2 is math motivation, $\xi_1 \xi_2$ is the interaction of prior math ability and math motivation
- y_1 to y_3 , $x_1...x_6$ centered, product indicators x_1x_4 , x_2x_5 , x_3x_6 are created, but not re-standardized
- ϕ $\gamma_1 = 0.425$, $\gamma_2 = 0.331$, $\gamma_3 = 0.197$; $\phi_{11} = 0.501$, $\phi_{22} = 0.529$, ϕ_{33} =0.308; and the completely standardized estimates: γ_1' =0.423, γ_2' =0.338 and γ_3' =0.153. By using Formula 27, γ_1'' =0.423, γ_2' =0.338, and γ_3'' =0.142

Latent Interaction - Marsh, Wen, Nagengast, Hau 25

Unconstrained Approaches: Examples (cont)

 SE and t-values from bootstrap resampling of the original N=500, a total of 800 bootstrap samples generated from PRELIS 2.72, minor differences in t-values SY=bs0.psf

OU MA=CM RA=bs1.dat XM WI=11 ND=6 IX=111 BS=800 SF=100

- Significant interaction shows:
 - +ve effect of Math ability is more substantial for highly motivated students, or equivalently
 - +ve effect of math motivation is more substantial for students with higher level of prior ability

Latent Interaction - Marsh, Wen, Nagengast, Hau 27

Robustness to Normality in Unconstrained Approach

- Considerations when normality is violated:
 - ML typically used is based on assumption of normality, however, this is a common problem to all CFA, SEM research (not specific to interaction/quadratic analyses)
 - $\ \, \bullet \,$ even when ξ_1,ξ_2 are normal, the product are non-normal, constrained, partially constrained, unconstrained all suffer when ML estimation is used
 - **■**Fortunately, ML tends to be robust to violation of normality in parameter estimates, though ML likelihood ratio test is too large, standard errors are too small under nonnormality

Latent Interaction - Marsh, Wen, Nagengast, Hau 28

Robustness in relation to Violation of Normality (cont)

- In most conditions, ML still outperforms alternative estimators (e.g., Arbitrary distribution function, ADF; weighted least square) that do not assume normality
- igoplus Nevertheless, still appropriate to adjust/correct SE and χ^2
- Specific to constrained approach (but not to partially constrained & unconstrained), the constraints are set on the assumption that ξ_1 , ξ_2 are normal, interaction estimates are not robust to violation of this assumption, size of bias does not decrease with increasing N; in contrast, both the partially constrained /unconstrained approaches provide relatively unbiased estimates under varying degree of nonnormality and this bias became smaller as N increased
- thus constrained approach not recommended

Latent Interaction - Marsh, Wen, Nagengast, Hau 29

Distribution-analytic Approaches

- Whereas they have many desirable features, they are computationally demanding, and not available in widely accessible SEM softwares
 - Latent Moderated Structural Equation (LMS, Klein & Moosbrugger, 2000) implemented in Mplus
 - Quasi-Maximum Likelihood(QML, Klein & Muthén, 2002) - available from author, not available in software yet
- QML (Klein & Muthen, 2002) was developed for more efficient
- Both estimate parameters in $\eta = \alpha + \Gamma \xi + \xi' \Omega \xi + \zeta$
- LMS and QML differ in the distributional assumptions about the latent dependent variable η and its indicators

Distribution-analytic Approaches (cont)

- LMS assumes x of the latent predictor, structural disturbance term ζ and all residuals in measurement model are assumed to be normal; can become computationally demanding and becomes unfeasible with a large number of nonlinear effects
- QML theoretically more robust against violations of normal distribution of indicators and residuals, but less efficient if distributional assumptions of LMS are fulfilled
- Computationally LMS is more efficient and can be used to fit models with a larger number of nonlinear effects and interactions

Latent Interaction - Marsh, Wen, Nagengast, Hau 31

Distribution-analytic Approaches (cont)

- Comparison to product-indicator approaches
- In LMS/QML not necessary to construct product indicators as the product of latent variables, non-normal distribution of the latent outcome variables (and its indicators y) are modeled directly
- Product indicator approaches usually assume normality of latent variables and indicators, which are violated in models with latent interaction, distribution-analytic approaches maximize special fitting functions taking into account nonnormality of indicators and dependent latent variable explicitly
- Due to lack of properly defined null model, no general fit statistics is provided (only nested models can be compared), unable to obtain appropriate std solutions

Latent Interaction -- Marsh, Wen, Nagengast, Hau 32

Bayesian Method

- Lee et al. (2007) developed a Bayesian approach fundamentally different from likelihood based approaches
- Assume all parameters are random and model their distribution conditionally on prior information and data
- Similar to distribution-analytic approaches, Bayesian models do not require product-indicators
- Good performance, especially in small samples, however, require sound statistical knowledge and careful thinking about the distributions of all model parameters and their priors

Latent Interaction - Marsh, Wen, Nagengast, Hau 33

Summary

- One of predictor variables is a manifest grouping variable with small number of categories → multiple group SEM, but not recommended when all predictors are continuous or based on multiple indicators
- Product-indicator dominated latent interaction research, still evolving, unconstrained approach – ease of implementation and robustness
- More recently, LMS/QML hold considerable promise over product-indicator approach
- Many issues not appropriately dealt with and applied research is limited

Latent Interaction -- Marsh, Wen, Nagengast, Hau 34

Limitation and Directions for Future Research

- Quadratic effects: special case of nonlinearity effect
 - Strong quadratic effect may appear as spurious interaction effect and hard to distinguish
 - Similar complicated issues arise when higher-order interaction involving more than two latent variables
- Tests of Measurement Invariance
 - Often ignored is the test of latent mean differences across multiple group without ensuring whether variables have same meaning in different groups (DIF): configural (pattern), weak (loading), strong (intercept+loading), strict (+ unique) invariance, need at least strong invariance

Latent Interaction - Marsh, Wen, Nagengast, Hau 35

Limitation and Directions for Future Research (cont)

- Marsh, Tracey, Craven (2006) proposed a hybrid approach using MIMIC (multiple-indicator-multiplecause) and multiple group approach
- Multilevel Design and Clustered Sample
 - Special type of interactions with data pointed related as clusters
 - Historically HLM tends to work with manifest variables, while SEM works with latent variables, inevitably, the integration will lead to more sophisticated analyses

